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Abstract We introduce a rigorously based numerical
method for compliance minimization problems in the
presence of pointwise stress constraints. The method
is based on new multiscale quantities that measure the
amplification of the local stress due to the microstruc-
ture. The design method is illustrated for two different
kinds of problems. The first identifies suitably graded
distributions of fibers inside shaft cross sections that
impart sufficient overall stiffness while at the same time
adequately control the amplitude of the local stress at
each point. The second set of problems are carried out
in the context of plane strain. In this study, we recover
a novel class of designs made from locally layered
media for minimum compliance subject to pointwise
stress constraints. The stress-constrained designs place
the more compliant material in the neighborhood of
stress concentrators associated with abrupt changes in
boundary loading and reentrant corners.
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1 Introduction

It is now well established that homogenization theory is
an effective tool for the design of composites for opti-
mal structural compliance and natural frequency (see
Allaire 2002; Bendsøe and Sigmund 2003; Cherkaev
and Kohn 1997; Cherkaev 2000; Lewinski and Telega
2000; Lurie 1993; Olhoff 1996; Tartar 2000). On the
other hand, relatively little work has been directed
towards the solution of stress-constrained composite
design problems. Recently, new efforts have initiated
the development of numerical methods for structural
optimization in the presence of stress constraints. The
investigation given in Duysinx and Bendsøe (1998)
provides a numerical method for the stress-constrained
minimum volume design problem. The method is car-
ried out using an empirical model known as the Solid
Isotropic Microstructure with Penalization (SIMP)
model (see Bendsøe and Sigmund 2003). The problem
of mean square stress constrained structural optimiza-
tion for fiber reinforced shafts is taken up in Lipton
(2002b). In that work, a numerical algorithm is devel-
oped based on a suitable homogenized quantity (the
covariance tensor) that rigorously encodes the mean
square stress constraints. The work of Allaire et al.
(2004) introduces a partial relaxation for topology op-
timization for minimum mean square stress using finite
rank laminates.

The general theory behind the homogenization ap-
proach to mean square stress (or gradient) constrained
structural optimization is significantly different from
the theory of compliance minimization. It is demon-
strated in Lipton (2002a) and Lipton (2004b) that
the associated relaxed problem formulation requires
the use of the derivatives of G-limits in addition to
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using the theory of effective properties (G-limits). Al-
ternative theoretical treatments for the related scalar
problem of minimizing the mean square distance of
the gradient from a target have been developed in the
earlier work of Tartar (1994) and subsequent work pre-
sented in Velo (2000), Grabovsky (2001), Lipton and
Velo (2002), Pedregal (2004), and Donso and Pedregal
(2005). These methods can naturally be rephrased in
terms of G-limits and their derivatives. All of these
methods invoke the use of suitable homogenized or
multiscale quantities for the design of local micro-
geometry. For this reason, these approaches may be
considered inverse homogenization methods.

In this paper, we present a new rigorously based
numerical approach to the problem of microstructure
design for minimum compliance subject to pointwise
stress constraints. In this study, the objective is to
design a graded microstructure to control local stress
in the vicinity of stress concentrations. The method-
ology used in this study has been developed by the au-
thors in Lipton (2004a), Lipton and Stuebner (2006a),
and Lipton and Stuebner (2006b) and is based upon
new rigorous multiscale stress criteria that connect the
macroscopic or homogenized stress to the local stress
at the scale of the microstructure (see Lipton 2003,
2004c). The multiscale criteria are given in terms of
quantities dubbed macrostress modulation functions.
In this study, we show how to apply these multi-
scale quantities to develop an inverse homogeniza-
tion approach for minimum compliance design subject
to pointwise stress constraints. The homogenized de-
sign formulation considered in this study is expressed
in terms of homogenized stress and strain fields and
macrostress modulation functions. The homogenized
design problem satisfies two requirements: the first is
that the homogenized design problem is computation-
ally tractable. The second is that the solution of the
homogenized design problem provides the means to
identify graded microstructures that deliver the re-
quired structural res-ponse while at the same time pro-
vide control on the pointwise values of the stress inside
the composite.

The design method is illustrated for two different
kinds of problems. The first type of problem is to iden-
tify suitably graded distributions of fibers inside shaft
cross sections that impart sufficient overall stiffness
while at the same time adequately control the intensity
of the local stress. This problem is solved numerically
in Section 3. The second set of examples are carried
out in the context of plane strain. In these examples,
we consider designs made from locally layered media.
In this study, we exhibit novel minimum compliance
designs that are subject to pointwise stress constraints

(see Section 4). These designs are shown to drastically
reduce the pointwise stress below the stress levels seen
in the minimum compliance designs. The new stress
constrained designs feature zones of compliant material
surrounding stress concentrators due to abrupt changes
in boundary loading and reentrant corners.

This paper touches on several topics that have been
part of the work of Pauli Pedersen. These include ma-
terial optimization, shape design, and stress constraints.
The authors would like to dedicate this article to Pro-
fessor Pedersen on the occasion of his 70th birthday.

2 Homogenized design formulation and identification
of optimally graded fiber reinforced shafts

We start by illustrating our approach for the first design
problem. In this study, we consider fiber reinforcement
of a long shaft with constant cross section subjected
to torsion loading (see Love 1944). The microstructure
within the shaft consists of long reinforcement fibers
of constant cross section with isotropic shear modulus
G f embedded in a more compliant material with shear
modulus Gm. The shaft together with the fibers are right
cylinders with generators along the x3 axis. The cross
section of the reinforced shaft is specified by a fixed
region � in the x1 − x2 plane. The shaft cross section
is divided up into many square cells. Each cell contains
a single fiber cross section. The fiber cross section is
circular and is centered inside the square cell. The radii
of the fiber inside each cell is chosen independently of
the others. The characteristic length scale of the square
cells relative to the size of the design domain is denoted
by ε. Our design problem is carried out when the total
fiber cross-sectional area is constrained to be 40% and
for ε = 0.1. The goal of the design problem is to identify
a graded distribution of fibers across the cross section
such that the following requirements are met:

I. The reinforced shaft has a torsional rigidity that is
acceptable.

II. The magnitude of the local pointwise stress inside
the composite is controlled over a designated sub-
set of the cross section.

To illustrate the ideas, we develop the inverse ho-
mogenization design method within the context of this
problem. The inverse homogenization design method
is a top–down design approach. First, a well-posed
homogenized design problem is developed. This design
problem is given in terms of design variables that re-
flect the local microgeometry inside the composite. For
the problem treated in this study, the design variable
for the homogenized design problem is given by the
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local density of fibers θ f (x). The homogenized design
problem is then solved to obtain an optimal density
function θ̂ f (x). With the optimal density in hand, we
use it to recover an explicit-graded fiber design that
has structural properties close to that of the optimal
homogenized design and satisfies prescribed pointwise
stress constraints. Such a fiber design is shown in Fig. 5.
The subsections are organized as follows, we begin by
describing the homogenized design problem and then
provide the explicit link between homogenized designs
and graded fiber reinforced designs that satisfy point-
wise stress constraints.

2.1 Homogenized design problem

The design variable for the homogenized design prob-
lem is given by the density function θ f (x). This function
is interpreted as providing the local area fraction of
the fiber phase in a homogenized design. The resource
constraint on the fiber phase is given by
∫

�

θ f (x) dx1dx2 ≤ � × (Area of �), (2.1)

where 0 < � < 1. At each point, the local area fraction
satisfies the box constraint given by

0 < θmin
f ≤ θ f ≤ θmax

f < 1. (2.2)

Here, the upper and lower bounds given in (2.2) cor-
respond to the entire design domain being filled with
composite material. In this treatment, the local fiber
area fraction θ f changes continuously with position
according to the condition

|θ f (x) − θ f (x + h)| ≤ K|h|. (2.3)

Here, the constant K is prescribed by the designer.
The universe of admissible designs given by all local
area fractions θ f satisfying the resource constraint, box
constraints, and (2.3) is denoted by D�.

The compliance in shear for the matrix and fiber are
given by Sm = (2Gm)−1 and S f = (2Gf )

−1, respectively.
Here, the matrix is more compliant and Sm > S f . For
a given θ f (x), we introduce the effective shear com-
pliance SE(θ f (x)) associated with a locally periodic
microgeometry made from fibers with circular cross
sections centered inside square unit cells. The unit
period cell for this configuration is denoted by Q. The
area fraction of Q occupied by the fiber cross section is
set to θ f (x). The shear compliance inside Q is written
S(θ f (x), y) and takes the value S f for points y in the
fiber and Sm for y in the matrix. The unit vectors e1 =
(1, 0) and e2 = (0, 1) are introduced and for each x in �,
we introduce the periodic fluctuating stress potentials

wi(x, y), i = 1, 2 that solve the microscopic equilibrium
equation

−divy (S(θ f (x), y)(∇yw
i(x, y) + ei)) = 0 (2.4)

for y in Q. Here, the x coordinate appears a parameter
and all differentiations are carried out with respect to
the y variable. The effective compliance tensor is a
function of the local area fraction of fibers θ f and from
symmetry the effective compliance tensor is isotropic
and given by[
SE(θ f (x))

]
ij = sE(θ f (x))δij (2.5)

where the effective compliance is given by

sE(θ f (x)) =(∫
Q

S(θ f (x), y)
(
∂y1w

1(x, y) + e1
1

)
dy

)
. (2.6)

A graph of sE plotted as a function of θ f is given in
Fig. 1 for the choice Sm = 0.5 and S f = 0.25.

The macroscopic stress potential φH vanishes on the
boundary of the shaft cross section and satisfies

−div
(
SE(θ f )∇φH) = 1 (2.7)

inside the cross section. The torsional rigidity for the
homogenized shaft cross section made from a homoge-
nized material with compliance SE(θ f ) is given by

R(θ f ) = 2
∫

�

φH dx1dx2. (2.8)

The macroscopic stress in the homogenized shaft is
given by σ H = R∇φH where R is the rotation matrix
associated with a counterclockwise rotation of π/2
radians.

The multiscale stress criterion is given in terms of the
macrostress modulation function introduced in Lipton
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Fig. 2 Plot of A(θ f )

(2003). The macrostress modulation function captures
the interaction between the macroscopic stress σ H(x)

and the microstructure. The microscopic response to
the imposed macroscopic stress is given by

σ(x, y) = R

[
2∑

i=1

(∇y(w
i(x, y)) + ei)∂xiφ

H(x)

]
.

The relevant interaction is described by the macrostress
modulation function f (θ f , σ

H) given by

f
(
θ f (x), σ H(x)

) = sup
y in Q

{|σ(x, y)|} . (2.9)

Physically, the macrostress modulation provides an up-
per envelope on the oscillating pointwise local stress in
the composite (see Lipton 2003).

From the symmetry of the microstructure, it easily
follows that macrostress modulation for a locally pe-
riodic microgeometry made from fibers with circular
cross sections centered inside square unit cells is of
the form

f
(
θ f (x), σ H(x)

) = A(θ f (x))
∣∣∇φH(x)

∣∣ , (2.10)

where for 0 < θmin
f ≤ θ f ≤ θmax

f < 1,

A(θ f ) = sup
y in Q

{|∇yw
1(x, y) + e1|} . (2.11)

A graph of the local stress amplification factor A(θ f ) as
function of θ f is given in Fig. 2 for the choice Sm = 0.5
and S f = 0.25.

We enforce the stress constraint by adding a penalty
term to the torsional rigidity and the homogenized
design problem is to minimize

L(θ f ) = −R(θ f ) + l
∫

�

(
f (θ f , ∇φH)

)p
dx1dx2, (2.12)

over all θ f in D� where l > 0 and φH satisfies

−div
(
SE(θ f )∇φH) = 1 (2.13)

and vanishes at the boundary. The computational
examples are carried out for a domain with reentrant
corners of interior angle 3π/2. In view of the strength
of the associated singularity at the reentrant corners the
power “p” appearing in the penalty term is chosen to be
less than 3. We mention in closing that (2.3) provides a
constraint on the spatial variation of the homogenized
designs. This constraint provides the compactness nec-
essary for a well-posed design problem (Lipton 2004a).
We point out that in our numerical simulations for the
fiber reinforced shaft, we have relaxed the constraint
(2.3) and discretized θ f using linear triangular elements.

2.2 Identification of graded fiber design
from the homogenized design

In this subsection, it is shown how to use the optimal
design θ̂ f for the homogenized problem to identify
a graded fiber design satisfying the requirements (I)
and (II). The examples considered in this treatment
are given for a structural domain specified by an “X”-
shaped cross section. All interior angles for the reen-
trant corners are fixed at 3π/2 radians. The tip-to-tip
length of each leg of the “X”-shaped domain is 2 cm.
The width of each leg is 2/3 cm. To describe the graded
fiber composite, the shaft cross section � is partitioned
into the N square subdomains Sk, k = 1, . . . , N and
� = ∪N

k Sk. The side length of these subdomains is
given by ε.

The building block for the microstructure is the
square unit cell filled with a centered circular fiber cross
section. The area fraction of the fiber phase inside the
unit cell is given by θ f . A microstructure is obtained
by rescaling the unit cell by the factor ε × ν so that it
becomes the period cell for a ε × ν periodic composite.
A graded fiber composite is constructed by placing a
ε × ν periodic composite inside each square subdomain
Sk. The area fraction of fibers in each subdomain is
given by the constant θk

f and these constants can change
between subdomains. We note that choosing ν = 1 cor-
responds to placing one fiber cross section inside Sk.
Higher values of ν correspond to progressively finer
periodic distributions of fiber cross sections inside Sk.
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For future reference, this type of locally periodic
microstructure will be called a (ε, ν)-graded periodic
fiber microstructure.

The local piecewise constant shear compliance for
the (ε, ν)-graded periodic fiber microstructure is de-
noted by Sε,ν . The stress potential for this microstruc-
ture is denoted by φε,ν and vanishes on the boundary
of the cross section. The stress potential satisfies the
equilibrium equation

−div (Sε,ν∇φε,ν) = 1. (2.14)

The torsional rigidity of the cross section is given by

Rε,ν = 2
∫

�

φε,ν dx1dx2. (2.15)

The nonzero components of the inplane stress are de-
noted by the vector σ ε,ν = (σ

ε,ν
13 , σ

ε,ν
23 ) and are related to

the gradient of the stress potential according to

σ ε,ν = R∇φε,ν . (2.16)

Here, R is the matrix corresponding to a counterclock-
wise rotation of π/2 and |σ ε,ν | = |∇φε,ν |.

The relation between the optimal design for the
homogenized problem and the pointwise stress and
torsional rigidity for the (ε, ν)-graded periodic fiber
microstructure is given in the following Theorem (see
Lipton 2004a; Lipton and Stuebner 2006b).

Theorem 2.1 Identification of graded microstructure.
Given the minimizing density θ̂ f and associated stress
potential φ̂H for the homogenized problem, we consider
sets of the form

AT =
{

x ∈ � : f
(
θ̂ f (x), ∇φ̂H(x)

)
≤ T

}
. (2.17)

For fixed choices of δ > 0 and t > T, one can choose
ε and ν small enough such that the (ε, ν)-graded periodic
microstructure for which the the part of AT over which
the stress constraint

|∇φε,ν(x)| ≤ t (2.18)

is violated has measure (area) less than δ and

|Rε,ν − R(θ̂ f )| < δ, (2.19)

with

N̂∑
k=1

|Sk|θ̂k
f ≤ � × (Area of �) + δ. (2.20)

For these designs, the area fractions of the fibers inside
each Sk are denoted by θ̂k

f and are chosen according to

θ̂k
f = 1

|Sk| ×
∫
Sk

θ̂ f (x)dx1dx2. (2.21)
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The homogenized design formulation together with
the identification Theorem comprise the inverse ho-
mogenization method for identifying microstructures
that satisfy pointwise stress constraints while delivering
a torsional rigidity close to that given by the optimal
design θ̂ f for the homogenized design problem.

3 Inverse homogenization and graded fiber designs
for the X-shaped cross section

In this section, we demonstrate the methodology for
fiber reinforced shafts. The calculations were carried
out using the gradient minimization algorithm intro-
duced in Lipton and Stuebner (2006b) and Lipton and
Stuebner (2006a). All calculations are done for the
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choice p = 1 in the Lagrangian (2.12). The shear stiff-
ness of the matrix is assigned the value Gm = 1 GPa
and the shear stiffness of the fiber phase is assigned the
value G f = 2 GPa. For these choices, Sm = 1/(2Gm) =
0.5 and S f = 1/(2G f ) = 0.25. For this example, θ f is
constrained to lie between 0.2 ≤ θ f ≤ 0.7 and

∫
�

θ f =
0.4 × Area of �. A plot of the fiber density field θ̂ f is
given in Fig. 3. The contour plots of the macrostress
modulation function f (θ̂ f (x), ∇φ̂H(x)) is given in Fig. 4.

The (ε, ν)-graded periodic microstructure is con-
structed from the optimal homogenized design ac-
cording to the prescription of Theorem 2.1. Here, we
compute the average of θ̂ f (x) over each square Sk ac-
cording to (2.21) and denote it by θ̂k

f . The area fraction

of the fibers in Sk is set to θ̂k
f . The design is computed
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Fig. 6 Contour plot of the magnitude of the local stress
amplitude
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problem

for the choice ε = 0.1 and ν = 1. The discrete fiber
design is displayed in Fig. 5.

The level lines of the magnitude of the stress field
in the actual fiber reinforced design is plotted in Fig. 6.
It follows from Figs. 4 and 6 that the pointwise stress
behavior is well represented by the level curves of
the macrostress modulation function for the optimal
homogenized design.

4 Graded locally layered media and two dimensional
elastic design

For our second set of examples, we consider a long
beam of fixed cross section and we suppose that the
loading is the same for every cross section. This is the
classic case of plain strain loading (Love 1944). We
first consider rectangular cross sections with loading
and boundary conditions illustrated in Fig. 7. For this
case, the microgeometry is made up of locally layered
material made from two linearly elastic components.
The layers consist of long rectangular fibers with con-
stant cross section with generators parallel to the beam.
The design variables are the relative thicknesses of the
layers and their orientation and these can change across
the rectangular cross section as indicated in Fig. 8.

In this section, we generate optimal locally layered
designs for three distinct design criteria. The first is

Fig. 8 The local layer
thickness and oreintation can
change across the cross
section Y

X
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to design for minimum overall compliance, the second
is to design for pointwise stress minimization and the
third is to design for minimum compliance subject to a
penalty on the magnitude of the pointwise stresses. The
homogenization methodology for optimal compliance
design requires one to use only the effective elastic
properties of the layered elastic medium (see Bendsøe
and Sigmund 2003). However, to design for the second
two criteria, we will need to also use the macrostress
modulation function associated with layered materials.

The two component materials are elastically iso-
tropic and well ordered with Young’s moduli E1 > E2

and equal Poisson’s ratio ν1 = ν2. The effective elas-
tic tensor for the layered material depends upon the
relative local relative layer thickness of material one
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Fig. 10 Grey scale plot of θ̂1(x) for the minimum compliance
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and the layer orientation. The local layer thickness of
material one is denoted by θ1. The layer orientation is
specified by the local unit vector normal to the layers
and is denoted by n. The elastic tensor for each material
is denoted by A1 and A2 and the formula for the effec-
tive elasticity is given by Francfort and Murat (1987)

AL(θ1, n)

= A1 + θ1
[
(A1 − A2)

−1 + (1 − θ1)�(n)
]−1

, (4.1)

where �(n) is given by

�(n)η : η

= 1

μ1

(|ηn|2 − (ηn · n)2
) + 1

2μ1 + λ1
(ηn · n)2, (4.2)

for any constant strain η. Here, the shear modulus
μ1 and Lame coefficient λ1 are those associated with
plane strain.The homogenized stress σ H is related to
the homogenized strain eH by

σ H = AL(θ1, n)eH. (4.3)

The elastic strain eH = 1/2(uH
i, j + uH

j,i) is the sym-
metrized gradient of the elastic displacement uH . The
elastic displacement is the solution of the equilibrium
problem

div
(

ALeH) = 0, (4.4)

and satisfies the displacement and traction conditions
given in Fig. 7. Following Stuebner (2006) the macro
stress modulation function associated with material one
for the layered material is given by

f1
(
θ1, σ

H(x)
) = |A1ζ |2, (4.5)
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where

ζ = A1η + (1 − θ1)

2
A1(p ⊗ n + n ⊗ p) (4.6)

and η = (AL)−1σ H . Here, ⊗ denotes the tensor product
of two vectors and

p = �μ

〈μ̃〉 (2ηn − tr{η}n) + �κ

〈μ̃〉 tr{η}n −

− 〈κ̃〉
〈μ̃〉

(
�μ(2ηn · n − tr{η}) + �κtr{η}

〈μ̃〉 + 〈κ̃〉
)

n, (4.7)

where �μ=μ2 − μ1, �κ =κ2 − κ1, 〈μ̃〉=(1 − θ1)μ1 +
θ1μ2, and 〈κ̃〉 = (1 − θ1)κ1 + θ1κ2.

The explicit link relating the local stress in a lo-
cally layered composite to the macro stress modulation
is analogous to Theorem 2.1 and is derived in Lipton
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Fig. 13 Contour plot of f1(θ̂1(x), σ H(x)) for the minimum stress
design

and Stuebner (2006b). The physical significance of the
macrostress modulation function is that it provides an
upper envelope on the local pointwise stress amplitude
inside material one when the layered microstructure is
sufficiently fine (see Lipton and Stuebner 2006b).

The design variables for this problem are the local
area fraction θ1(x) of material one used in the layers and
the layer orientation n(x). Here, the layer orientation is
written

n(x) = (sin γ (x), cos γ (x))

where γ (x) is the local layer angle. As before, θ1(x)

is free to change inside the design domain subject to
the constraints given by (2.1), (2.2), and (2.3). Here,
the box constraints are given by 0 ≤ γ < π , 0.01 ≤
θ1 ≤ 0.99,

∫
�

θ1 = 0.4 × Area of �, E1 = 300Gpa, E2 =
30Gpa, and ν1 = ν2 = 1/3. We reiterate that the box
constraints on θ1 ensure that the design domain is com-
pletely filled with composite material.

The overall compliance of the structure is given by

C(θ1, γ ) =
∫

g · uH ds, (4.8)

where the integral is taken over the boundary of the
design domain and g is the boundary traction field. The
design problem for minimizing the overall compliance
is given by

min
θ1 γ

{C(θ1, γ )} ,

subject to constraints on θ1. (4.9)

This design problem is shown to be well posed in
Lipton and Stuebner (2006b). The optimal area fraction
distribution for this problem is denoted by θ̂1 and is
displayed in Fig. 10. The level curves of the associated
macrostress modulation function for material one are
plotted in Fig. 11.

For the second design problem, we minimize the
macrostress modulation function associated with the
stiff material (material one) over the cross section.
Here, the function to be optimized is given by

M(θ1, γ ) =
∫

( f1(θ1, σ
H))p dx, (4.10)

Table 1 Technical data for the arch

Optimized for: phase 1 C(θ1, γ ) M(θ1, γ )

Compliance 40.461% 1.876 1563.462
Stress 40.122% 5.777 557.467
Compliance 40.364% 3.428 587.924

and stress
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Fig. 14 Grey scale plot of θ̂1(x) for the stress penalized minimum
compliance design

where the integral is taken over the design domain
and 1 ≤ p < ∞. The design problem for minimizing the
local stress inside material one is given by

min
θ1 γ

{M(θ1, γ )} ,

subject to constraints on θ1. (4.11)

This design problem is shown to be well posed in Lipton
and Stuebner (2006b). For this example, we choose
p = 1.

The optimal area fraction distribution for this prob-
lem is denoted by θ̂1 and is displayed in Fig. 12. The
level curves of the associated macrostress modulation
function are plotted in Fig. 13. The comparison of
Figs. 11 and 13 shows that the zones of high stress
amplitude are dramatically reduced by the minimum
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Fig. 15 Contour plot of f1(θ̂1(x), σ H(x)) for the stress penalized
minimum compliance design
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Fig. 16 Convergence history for C(θ1, γ ) for minimum compli-
ance design

stress design displayed in Fig. 12. While the overall
compliance for the minimum stress design is three
times higher than the minimum compliance design (see
Table 1).

Last, the compliance minimization subject to a
penalty on the pointwise stress inside material one is
given by

min
θ1 γ

{C(θ1, γ ) + � × M(θ1, γ )} ,

subject to constraints on θ1. (4.12)

where � is the Lagrange multiplier for the stress
constraint.

The optimal area fraction distribution for this prob-
lem is denoted by θ̂1 and is displayed in Fig. 14. The
level curves of the associated macrostress modulation
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Fig. 17 Convergence history for M(θ1, γ ) for minimum stress
design
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Fig. 18 Grey scale plot of θ̂1(x) for the minimum compliance
design for the L-shaped domain

function are plotted in Fig. 15. The comparison of
Figs. 11 and 15 shows that the zones of high stress
amplitude seen in the design for compliance mini-
mization are dramatically reduced inside the design
obtained from the stress penalized compliance mini-
mization Fig. 14. Table 1 shows that the overall com-
pliance for the stress penalized design is twice as high
as the compliance minimized design. It is interesting to
note that the stress penalized design surrounds the re-
gions of high stress amplitude with compliant material.
This diminishes the effect of the stress concentrations
arising from the abrupt change in boundary loading.

In each of these examples, we relaxed the constraint
(2.3) and all of the optimizations were carried out
using square elements with bilinear shape functions for
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Fig. 19 Contour plot of f1(θ̂1(x), σ H(x)) for the minimum com-
pliance design for the L-shaped domain

Fig. 20 Grey scale plot of θ̂1(x) for the minimum stress design for
the L-shaped domain

both the elastic field variables and θ1. The runs were
carried out for a FEM mesh consisting of roughly 11,000
elements. The convergence histories for the minimum
compliance design and minimum stress design are given
in Figs. 16 and 17.

The final two examples are carried out for the L-
shaped design domain. This domain, together with the
boundary conditions and loading, is shown in Fig. 9.
Here, we compare the solutions to the minimum com-
pliance design problem (4.9) with the minimum local
stress design problem (4.11) posed on the L-shaped
cross section. As seen in Fig. 9, the L-shaped domain
has a rounded reentrant corner that provides a stress
concentration.

The design problems are carried out subject to the
constraint that 40% of the cross-sectional area is oc-
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Fig. 21 Contour plot of f1(θ̂1(x), σ H(x)) for the minimum stress
design for the L-shaped domain
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Table 2 Technical data for the L-shaped domain

Optimized for: phase 1 C(θ1, γ ) M(θ1, γ )

Compliance 40.062% 6.525 7197.569
Stress 39.793% 11.986 4737.866

cupied by material one. The optimal distribution of
area fraction of material one θ̂1 for the minimum com-
pliance design problem (4.9) is displayed in Fig. 18. The
associated level curves of the macrostress modulation
function for material one are plotted in Fig. 19. The
optimal distribution of area fraction of material one θ̂1

for the minimum pointwise stress design problem (4.11)
is displayed in Fig. 20 and the associated level curves of
the macrostress modulation function for material one
are plotted in Fig. 21. Table 2 shows that the minimum
compliance design has half the compliance as that of the
minimum stress design. On the other hand comparison
of Figs. 19 and 21 show that the upper envelope for
the pointwise stress intensity as given by the level lines
of the macrostress modulation function is significantly
lower for the minimum stress design problem. Compar-
ison of Figs. 18 and 20 show that the minimum stress
design problem removes the highest concentration of
stiff material away from the reentrant corner. In these
two examples, we have relaxed the constraint (2.3) and
all of the optimizations were carried out using triangu-
lar elements with linear shape functions for both the
elastic field variables and θ1. The runs were carried out
for a FEM mesh consisting of roughly 72,000 elements.
The convergence histories for the objective function for
the minimum stress design is given in Fig. 22.
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Fig. 22 The convergence history for M(θ1, γ ) for minimum stress
design for the L-shaped domain
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